定積分・広義積分計算機
定積分と広義積分を手順を追って計算する
この計算機は、定積分(すなわち上下限のある積分)を、広義積分も含めて、解法手順を示しながら計算を試みます。
Solution
Your input: calculate $$$\int_{0}^{\frac{1}{2}}\left( \operatorname{asin}{\left(x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\operatorname{asin}{\left(x \right)} d x}=x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right)|_{\left(x=\frac{1}{2}\right)}=\frac{\pi}{12} + \frac{\sqrt{3}}{2}$$$
$$$\left(x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right)|_{\left(x=0\right)}=1$$$
$$$\int_{0}^{\frac{1}{2}}\left( \operatorname{asin}{\left(x \right)} \right)dx=\left(x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right)|_{\left(x=\frac{1}{2}\right)}-\left(x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right)|_{\left(x=0\right)}=-1 + \frac{\pi}{12} + \frac{\sqrt{3}}{2}$$$
Answer: $$$\int_{0}^{\frac{1}{2}}\left( \operatorname{asin}{\left(x \right)} \right)dx=-1 + \frac{\pi}{12} + \frac{\sqrt{3}}{2}\approx 0.127824791583588$$$