Integrale di $$$3 - x^{2}$$$

La calcolatrice troverà l'integrale/primitiva di $$$3 - x^{2}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(3 - x^{2}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(3 - x^{2}\right)d x}}} = {\color{red}{\left(\int{3 d x} - \int{x^{2} d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=3$$$:

$$- \int{x^{2} d x} + {\color{red}{\int{3 d x}}} = - \int{x^{2} d x} + {\color{red}{\left(3 x\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$3 x - {\color{red}{\int{x^{2} d x}}}=3 x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=3 x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Pertanto,

$$\int{\left(3 - x^{2}\right)d x} = - \frac{x^{3}}{3} + 3 x$$

Semplifica:

$$\int{\left(3 - x^{2}\right)d x} = \frac{x \left(9 - x^{2}\right)}{3}$$

Aggiungi la costante di integrazione:

$$\int{\left(3 - x^{2}\right)d x} = \frac{x \left(9 - x^{2}\right)}{3}+C$$

Risposta

$$$\int \left(3 - x^{2}\right)\, dx = \frac{x \left(9 - x^{2}\right)}{3} + C$$$A


Please try a new game Rotatly