Integral dari $$$3 - x^{2}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(3 - x^{2}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(3 - x^{2}\right)d x}}} = {\color{red}{\left(\int{3 d x} - \int{x^{2} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=3$$$:
$$- \int{x^{2} d x} + {\color{red}{\int{3 d x}}} = - \int{x^{2} d x} + {\color{red}{\left(3 x\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$3 x - {\color{red}{\int{x^{2} d x}}}=3 x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=3 x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Oleh karena itu,
$$\int{\left(3 - x^{2}\right)d x} = - \frac{x^{3}}{3} + 3 x$$
Sederhanakan:
$$\int{\left(3 - x^{2}\right)d x} = \frac{x \left(9 - x^{2}\right)}{3}$$
Tambahkan konstanta integrasi:
$$\int{\left(3 - x^{2}\right)d x} = \frac{x \left(9 - x^{2}\right)}{3}+C$$
Jawaban
$$$\int \left(3 - x^{2}\right)\, dx = \frac{x \left(9 - x^{2}\right)}{3} + C$$$A