Integrale di $$$e^{3 x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int e^{3 x}\, dx$$$.
Soluzione
Sia $$$u=3 x$$$.
Quindi $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{3}$$$.
Quindi,
$${\color{red}{\int{e^{3 x} d x}}} = {\color{red}{\int{\frac{e^{u}}{3} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{3} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}$$
L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{3} = \frac{{\color{red}{e^{u}}}}{3}$$
Ricordiamo che $$$u=3 x$$$:
$$\frac{e^{{\color{red}{u}}}}{3} = \frac{e^{{\color{red}{\left(3 x\right)}}}}{3}$$
Pertanto,
$$\int{e^{3 x} d x} = \frac{e^{3 x}}{3}$$
Aggiungi la costante di integrazione:
$$\int{e^{3 x} d x} = \frac{e^{3 x}}{3}+C$$
Risposta
$$$\int e^{3 x}\, dx = \frac{e^{3 x}}{3} + C$$$A