Integrale di $$$3^{2 x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 3^{2 x}\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{3^{2 x} d x}=\int{9^{x} d x}$$$.
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=9$$$:
$${\color{red}{\int{9^{x} d x}}} = {\color{red}{\frac{9^{x}}{\ln{\left(9 \right)}}}}$$
Pertanto,
$$\int{9^{x} d x} = \frac{9^{x}}{\ln{\left(9 \right)}}$$
Semplifica:
$$\int{9^{x} d x} = \frac{9^{x}}{2 \ln{\left(3 \right)}}$$
Aggiungi la costante di integrazione:
$$\int{9^{x} d x} = \frac{9^{x}}{2 \ln{\left(3 \right)}}+C$$
Risposta
$$$\int 3^{2 x}\, dx = \frac{9^{x}}{2 \ln\left(3\right)} + C$$$A