Integral of $$$3^{2 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 3^{2 x}\, dx$$$.
Solution
The input is rewritten: $$$\int{3^{2 x} d x}=\int{9^{x} d x}$$$.
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=9$$$:
$${\color{red}{\int{9^{x} d x}}} = {\color{red}{\frac{9^{x}}{\ln{\left(9 \right)}}}}$$
Therefore,
$$\int{9^{x} d x} = \frac{9^{x}}{\ln{\left(9 \right)}}$$
Simplify:
$$\int{9^{x} d x} = \frac{9^{x}}{2 \ln{\left(3 \right)}}$$
Add the constant of integration:
$$\int{9^{x} d x} = \frac{9^{x}}{2 \ln{\left(3 \right)}}+C$$
Answer
$$$\int 3^{2 x}\, dx = \frac{9^{x}}{2 \ln\left(3\right)} + C$$$A