Integrale di $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \ln\left(\frac{a^{2}}{x^{2}}\right)\, dx$$$.
Soluzione
Per l'integrale $$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Siano $$$\operatorname{u}=\ln{\left(\frac{a^{2}}{x^{2}} \right)}$$$ e $$$\operatorname{dv}=dx$$$.
Quindi $$$\operatorname{du}=\left(\ln{\left(\frac{a^{2}}{x^{2}} \right)}\right)^{\prime }dx=- \frac{2}{x} dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (i passaggi si possono vedere »).
Quindi,
$${\color{red}{\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x}}}={\color{red}{\left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} \cdot x-\int{x \cdot \left(- \frac{2}{x}\right) d x}\right)}}={\color{red}{\left(x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - \int{\left(-2\right)d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=-2$$$:
$$x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - {\color{red}{\int{\left(-2\right)d x}}} = x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - {\color{red}{\left(- 2 x\right)}}$$
Pertanto,
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2 x$$
Semplifica:
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2\right)$$
Aggiungi la costante di integrazione:
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2\right)+C$$
Risposta
$$$\int \ln\left(\frac{a^{2}}{x^{2}}\right)\, dx = x \left(\ln\left(\frac{a^{2}}{x^{2}}\right) + 2\right) + C$$$A