Integral of $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \ln\left(\frac{a^{2}}{x^{2}}\right)\, dx$$$.
Solution
For the integral $$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\ln{\left(\frac{a^{2}}{x^{2}} \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\ln{\left(\frac{a^{2}}{x^{2}} \right)}\right)^{\prime }dx=- \frac{2}{x} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
The integral becomes
$${\color{red}{\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x}}}={\color{red}{\left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} \cdot x-\int{x \cdot \left(- \frac{2}{x}\right) d x}\right)}}={\color{red}{\left(x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - \int{\left(-2\right)d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=-2$$$:
$$x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - {\color{red}{\int{\left(-2\right)d x}}} = x \ln{\left(\frac{a^{2}}{x^{2}} \right)} - {\color{red}{\left(- 2 x\right)}}$$
Therefore,
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2 x$$
Simplify:
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2\right)$$
Add the constant of integration:
$$\int{\ln{\left(\frac{a^{2}}{x^{2}} \right)} d x} = x \left(\ln{\left(\frac{a^{2}}{x^{2}} \right)} + 2\right)+C$$
Answer
$$$\int \ln\left(\frac{a^{2}}{x^{2}}\right)\, dx = x \left(\ln\left(\frac{a^{2}}{x^{2}}\right) + 2\right) + C$$$A