Integrale di $$$\frac{1}{2 a^{6} x^{6}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\frac{1}{2 a^{6} x^{6}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{2 a^{6} x^{6}}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2 a^{6}}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{6}}$$$:

$${\color{red}{\int{\frac{1}{2 a^{6} x^{6}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{6}} d x}}{2 a^{6}}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-6$$$:

$$\frac{{\color{red}{\int{\frac{1}{x^{6}} d x}}}}{2 a^{6}}=\frac{{\color{red}{\int{x^{-6} d x}}}}{2 a^{6}}=\frac{{\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}}{2 a^{6}}=\frac{{\color{red}{\left(- \frac{x^{-5}}{5}\right)}}}{2 a^{6}}=\frac{{\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}}{2 a^{6}}$$

Pertanto,

$$\int{\frac{1}{2 a^{6} x^{6}} d x} = - \frac{1}{10 a^{6} x^{5}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{2 a^{6} x^{6}} d x} = - \frac{1}{10 a^{6} x^{5}}+C$$

Risposta

$$$\int \frac{1}{2 a^{6} x^{6}}\, dx = - \frac{1}{10 a^{6} x^{5}} + C$$$A


Please try a new game Rotatly