Integrale di $$$2^{x} - 4^{x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(2^{x} - 4^{x}\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(2^{x} - 4^{x}\right)d x}}} = {\color{red}{\left(\int{2^{x} d x} - \int{4^{x} d x}\right)}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$- \int{4^{x} d x} + {\color{red}{\int{2^{x} d x}}} = - \int{4^{x} d x} + {\color{red}{\frac{2^{x}}{\ln{\left(2 \right)}}}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=4$$$:
$$\frac{2^{x}}{\ln{\left(2 \right)}} - {\color{red}{\int{4^{x} d x}}} = \frac{2^{x}}{\ln{\left(2 \right)}} - {\color{red}{\frac{4^{x}}{\ln{\left(4 \right)}}}}$$
Pertanto,
$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2^{x}}{\ln{\left(2 \right)}} - \frac{4^{x}}{\ln{\left(4 \right)}}$$
Semplifica:
$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln{\left(2 \right)}}$$
Aggiungi la costante di integrazione:
$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln{\left(2 \right)}}+C$$
Risposta
$$$\int \left(2^{x} - 4^{x}\right)\, dx = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln\left(2\right)} + C$$$A