Integral de $$$2^{x} - 4^{x}$$$

La calculadora encontrará la integral/antiderivada de $$$2^{x} - 4^{x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(2^{x} - 4^{x}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(2^{x} - 4^{x}\right)d x}}} = {\color{red}{\left(\int{2^{x} d x} - \int{4^{x} d x}\right)}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$- \int{4^{x} d x} + {\color{red}{\int{2^{x} d x}}} = - \int{4^{x} d x} + {\color{red}{\frac{2^{x}}{\ln{\left(2 \right)}}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=4$$$:

$$\frac{2^{x}}{\ln{\left(2 \right)}} - {\color{red}{\int{4^{x} d x}}} = \frac{2^{x}}{\ln{\left(2 \right)}} - {\color{red}{\frac{4^{x}}{\ln{\left(4 \right)}}}}$$

Por lo tanto,

$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2^{x}}{\ln{\left(2 \right)}} - \frac{4^{x}}{\ln{\left(4 \right)}}$$

Simplificar:

$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln{\left(2 \right)}}$$

Añade la constante de integración:

$$\int{\left(2^{x} - 4^{x}\right)d x} = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln{\left(2 \right)}}+C$$

Respuesta

$$$\int \left(2^{x} - 4^{x}\right)\, dx = \frac{2 \cdot 2^{x} - 4^{x}}{2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly