Integrale di $$$\frac{3}{2 y}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{3}{2 y}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{3}{2 y}\, dy$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=\frac{3}{2}$$$ e $$$f{\left(y \right)} = \frac{1}{y}$$$:

$${\color{red}{\int{\frac{3}{2 y} d y}}} = {\color{red}{\left(\frac{3 \int{\frac{1}{y} d y}}{2}\right)}}$$

L'integrale di $$$\frac{1}{y}$$$ è $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:

$$\frac{3 {\color{red}{\int{\frac{1}{y} d y}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{y}\right| \right)}}}}{2}$$

Pertanto,

$$\int{\frac{3}{2 y} d y} = \frac{3 \ln{\left(\left|{y}\right| \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{3}{2 y} d y} = \frac{3 \ln{\left(\left|{y}\right| \right)}}{2}+C$$

Risposta

$$$\int \frac{3}{2 y}\, dy = \frac{3 \ln\left(\left|{y}\right|\right)}{2} + C$$$A


Please try a new game Rotatly