Derivata di $$$x + 1$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(x + 1\right)$$$.
Soluzione
La derivata di una somma/differenza è la somma/differenza delle derivate:
$${\color{red}\left(\frac{d}{dx} \left(x + 1\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(1\right)\right)}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$${\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(1\right) = {\color{red}\left(1\right)} + \frac{d}{dx} \left(1\right)$$La derivata di una costante è $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + 1 = {\color{red}\left(0\right)} + 1$$Quindi, $$$\frac{d}{dx} \left(x + 1\right) = 1$$$.
Risposta
$$$\frac{d}{dx} \left(x + 1\right) = 1$$$A
Please try a new game Rotatly