Derivata di $$$\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)$$$.
Soluzione
La derivata di una somma/differenza è la somma/differenza delle derivate:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right) - \frac{d}{dt} \left(\sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)}$$La derivata di una costante è $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)} + \frac{d}{dt} \left(\sqrt{2} t\right) = - {\color{red}\left(0\right)} + \frac{d}{dt} \left(\sqrt{2} t\right)$$Applica la regola del multiplo costante $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ con $$$c = \sqrt{2}$$$ e $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dt} \left(t\right)\right)}$$Applica la regola della potenza $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \sqrt{2} {\color{red}\left(1\right)}$$Quindi, $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right) = \sqrt{2}$$$.
Risposta
$$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right) = \sqrt{2}$$$A