Derivata di $$$e^{x} + \sin{\left(y z \right)}$$$ rispetto a $$$x$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)$$$.
Soluzione
La derivata di una somma/differenza è la somma/differenza delle derivate:
$${\color{red}\left(\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{x}\right) + \frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)}$$La derivata di una costante è $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dx} \left(e^{x}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{x}\right)$$La derivata della funzione esponenziale è $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} = {\color{red}\left(e^{x}\right)}$$Quindi, $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$.
Risposta
$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$A
Please try a new game Rotatly