Derivata di $$$\cos{\left(b - x \right)}$$$ rispetto a $$$x$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)$$$.
Soluzione
La funzione $$$\cos{\left(b - x \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ e $$$g{\left(x \right)} = b - x$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(b - x\right)\right)}$$La derivata del coseno è $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(b - x\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(b - x\right)$$Torna alla variabile originale:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(b - x\right) = - \sin{\left({\color{red}\left(b - x\right)} \right)} \frac{d}{dx} \left(b - x\right)$$La derivata di una somma/differenza è la somma/differenza delle derivate:
$$- \sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(b - x\right)\right)} = - \sin{\left(b - x \right)} {\color{red}\left(\frac{db}{dx} - \frac{d}{dx} \left(x\right)\right)}$$La derivata di una costante è $$$0$$$:
$$- \left({\color{red}\left(\frac{db}{dx}\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)} = - \left({\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \sin{\left(b - x \right)} {\color{red}\left(1\right)}$$Quindi, $$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$.
Risposta
$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$A