Derivata di $$$\frac{2 y}{x}$$$ rispetto a $$$y$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dy} \left(\frac{2 y}{x}\right)$$$.
Soluzione
Applica la regola del multiplo costante $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ con $$$c = \frac{2}{x}$$$ e $$$f{\left(y \right)} = y$$$:
$${\color{red}\left(\frac{d}{dy} \left(\frac{2 y}{x}\right)\right)} = {\color{red}\left(\frac{2}{x} \frac{d}{dy} \left(y\right)\right)}$$Applica la regola della potenza $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$\frac{2 {\color{red}\left(\frac{d}{dy} \left(y\right)\right)}}{x} = \frac{2 {\color{red}\left(1\right)}}{x}$$Quindi, $$$\frac{d}{dy} \left(\frac{2 y}{x}\right) = \frac{2}{x}$$$.
Risposta
$$$\frac{d}{dy} \left(\frac{2 y}{x}\right) = \frac{2}{x}$$$A