Derivata di $$$2 \sin{\left(t \right)}$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)$$$.
Soluzione
Applica la regola del multiplo costante $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ con $$$c = 2$$$ e $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$La derivata del seno è $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = 2 {\color{red}\left(\cos{\left(t \right)}\right)}$$Quindi, $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$.
Risposta
$$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$A