Integral dari $$$\frac{1}{1 - y}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{1 - y}\, dy$$$.
Solusi
Misalkan $$$u=1 - y$$$.
Kemudian $$$du=\left(1 - y\right)^{\prime }dy = - dy$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dy = - du$$$.
Dengan demikian,
$${\color{red}{\int{\frac{1}{1 - y} d y}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=1 - y$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\left(1 - y\right)}}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{1}{1 - y} d y} = - \ln{\left(\left|{y - 1}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{1 - y} d y} = - \ln{\left(\left|{y - 1}\right| \right)}+C$$
Jawaban
$$$\int \frac{1}{1 - y}\, dy = - \ln\left(\left|{y - 1}\right|\right) + C$$$A