Integral dari $$$\csc{\left(\theta \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\csc{\left(\theta \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \csc{\left(\theta \right)}\, d\theta$$$.

Solusi

Tuliskan kembali kosekan sebagai $$$\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}$$$:

$${\color{red}{\int{\csc{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{1}{\sin{\left(\theta \right)}} d \theta}}}$$

Tulis ulang sinus menggunakan rumus sudut ganda $$$\sin\left(\theta\right)=2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{\sin{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} \right)} \cos{\left(\frac{\theta}{2} \right)}} d \theta}}}$$

Kalikan pembilang dan penyebut dengan $$$\sec^2\left(\frac{\theta}{2} \right)$$$:

$${\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} \right)} \cos{\left(\frac{\theta}{2} \right)}} d \theta}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} \right)}}{2 \tan{\left(\frac{\theta}{2} \right)}} d \theta}}}$$

Misalkan $$$u=\tan{\left(\frac{\theta}{2} \right)}$$$.

Kemudian $$$du=\left(\tan{\left(\frac{\theta}{2} \right)}\right)^{\prime }d\theta = \frac{\sec^{2}{\left(\frac{\theta}{2} \right)}}{2} d\theta$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(\frac{\theta}{2} \right)} d\theta = 2 du$$$.

Oleh karena itu,

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} \right)}}{2 \tan{\left(\frac{\theta}{2} \right)}} d \theta}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=\tan{\left(\frac{\theta}{2} \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{\theta}{2} \right)}}}}\right| \right)}$$

Oleh karena itu,

$$\int{\csc{\left(\theta \right)} d \theta} = \ln{\left(\left|{\tan{\left(\frac{\theta}{2} \right)}}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{\csc{\left(\theta \right)} d \theta} = \ln{\left(\left|{\tan{\left(\frac{\theta}{2} \right)}}\right| \right)}+C$$

Jawaban

$$$\int \csc{\left(\theta \right)}\, d\theta = \ln\left(\left|{\tan{\left(\frac{\theta}{2} \right)}}\right|\right) + C$$$A


Please try a new game Rotatly