Turunan dari $$$x^{2} + 2 x$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(x^{2} + 2 x\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{dx} \left(x^{2} + 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(2 x\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(2 x\right) = {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(2 x\right)$$Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = 2$$$ dan $$$f{\left(x \right)} = x$$$:
$$2 x + {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = 2 x + {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x + 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x + 2 {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(x^{2} + 2 x\right) = 2 x + 2$$$.
Jawaban
$$$\frac{d}{dx} \left(x^{2} + 2 x\right) = 2 x + 2$$$A