Turunan dari $$$\frac{x}{c}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(\frac{x}{c}\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(k f{\left(x \right)}\right) = k \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$k = \frac{1}{c}$$$ dan $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{c}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{c}\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{c} = \frac{{\color{red}\left(1\right)}}{c}$$Dengan demikian, $$$\frac{d}{dx} \left(\frac{x}{c}\right) = \frac{1}{c}$$$.
Jawaban
$$$\frac{d}{dx} \left(\frac{x}{c}\right) = \frac{1}{c}$$$A