Turunan dari $$$\frac{x}{2} - 450$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(\frac{x}{2} - 450\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} - 450\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) - \frac{d}{dx} \left(450\right)\right)}$$Turunan dari suatu konstanta adalah $$$0$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(450\right)\right)} + \frac{d}{dx} \left(\frac{x}{2}\right) = - {\color{red}\left(0\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)$$Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \frac{1}{2}$$$ dan $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{{\color{red}\left(1\right)}}{2}$$Dengan demikian, $$$\frac{d}{dx} \left(\frac{x}{2} - 450\right) = \frac{1}{2}$$$.
Jawaban
$$$\frac{d}{dx} \left(\frac{x}{2} - 450\right) = \frac{1}{2}$$$A