Turunan dari $$$u \ln\left(2\right)$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{du} \left(u \ln\left(2\right)\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ dengan $$$c = \ln\left(2\right)$$$ dan $$$f{\left(u \right)} = u$$$:
$${\color{red}\left(\frac{d}{du} \left(u \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{du} \left(u\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{du} \left(u\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{du} \left(u \ln\left(2\right)\right) = \ln\left(2\right)$$$.
Jawaban
$$$\frac{d}{du} \left(u \ln\left(2\right)\right) = \ln\left(2\right)$$$A