Turunan dari $$$\frac{\theta}{2}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{d\theta} \left(c f{\left(\theta \right)}\right) = c \frac{d}{d\theta} \left(f{\left(\theta \right)}\right)$$$ dengan $$$c = \frac{1}{2}$$$ dan $$$f{\left(\theta \right)} = \theta$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(\frac{\theta}{2}\right)\right)} = {\color{red}\left(\frac{\frac{d}{d\theta} \left(\theta\right)}{2}\right)}$$Terapkan aturan pangkat $$$\frac{d}{d\theta} \left(\theta^{n}\right) = n \theta^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{d\theta} \left(\theta\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{d\theta} \left(\theta\right)\right)}}{2} = \frac{{\color{red}\left(1\right)}}{2}$$Dengan demikian, $$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right) = \frac{1}{2}$$$.
Jawaban
$$$\frac{d}{d\theta} \left(\frac{\theta}{2}\right) = \frac{1}{2}$$$A