Turunan dari $$$\sqrt{2} u - 1$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{du} \left(\sqrt{2} u - 1\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{2} u - 1\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{2} u\right) - \frac{d}{du} \left(1\right)\right)}$$Turunan dari suatu konstanta adalah $$$0$$$:
$$- {\color{red}\left(\frac{d}{du} \left(1\right)\right)} + \frac{d}{du} \left(\sqrt{2} u\right) = - {\color{red}\left(0\right)} + \frac{d}{du} \left(\sqrt{2} u\right)$$Terapkan aturan kelipatan konstanta $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ dengan $$$c = \sqrt{2}$$$ dan $$$f{\left(u \right)} = u$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{2} u\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{du} \left(u\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{du} \left(u\right)\right)} = \sqrt{2} {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{du} \left(\sqrt{2} u - 1\right) = \sqrt{2}$$$.
Jawaban
$$$\frac{d}{du} \left(\sqrt{2} u - 1\right) = \sqrt{2}$$$A