Turunan dari $$$\sqrt{2} t - \sqrt{-3 + \sqrt{5}}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right) - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)\right)}$$Terapkan aturan kelipatan konstanta $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ dengan $$$c = \sqrt{2}$$$ dan $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right)\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right) = {\color{red}\left(\sqrt{2} \frac{d}{dt} \left(t\right)\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)$$Turunan dari suatu konstanta adalah $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)\right)} + \sqrt{2} \frac{d}{dt} \left(t\right) = - {\color{red}\left(0\right)} + \sqrt{2} \frac{d}{dt} \left(t\right)$$Terapkan aturan pangkat $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \sqrt{2} {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right) = \sqrt{2}$$$.
Jawaban
$$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right) = \sqrt{2}$$$A