Turunan dari $$$\sin{\left(\frac{\pi x}{3} \right)}$$$

Kalkulator akan menentukan turunan dari $$$\sin{\left(\frac{\pi x}{3} \right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\sin{\left(\frac{\pi x}{3} \right)}\right)$$$.

Solusi

Fungsi $$$\sin{\left(\frac{\pi x}{3} \right)}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ dan $$$g{\left(x \right)} = \frac{\pi x}{3}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\frac{\pi x}{3} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\frac{\pi x}{3}\right)\right)}$$

Turunan fungsi sinus adalah $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{\pi x}{3}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{\pi x}{3}\right)$$

Kembalikan ke variabel semula:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{\pi x}{3}\right) = \cos{\left({\color{red}\left(\frac{\pi x}{3}\right)} \right)} \frac{d}{dx} \left(\frac{\pi x}{3}\right)$$

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \frac{\pi}{3}$$$ dan $$$f{\left(x \right)} = x$$$:

$$\cos{\left(\frac{\pi x}{3} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{\pi x}{3}\right)\right)} = \cos{\left(\frac{\pi x}{3} \right)} {\color{red}\left(\frac{\pi}{3} \frac{d}{dx} \left(x\right)\right)}$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{\pi \cos{\left(\frac{\pi x}{3} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{3} = \frac{\pi \cos{\left(\frac{\pi x}{3} \right)} {\color{red}\left(1\right)}}{3}$$

Dengan demikian, $$$\frac{d}{dx} \left(\sin{\left(\frac{\pi x}{3} \right)}\right) = \frac{\pi \cos{\left(\frac{\pi x}{3} \right)}}{3}$$$.

Jawaban

$$$\frac{d}{dx} \left(\sin{\left(\frac{\pi x}{3} \right)}\right) = \frac{\pi \cos{\left(\frac{\pi x}{3} \right)}}{3}$$$A


Please try a new game Rotatly