Turunan dari $$$\sin{\left(4 t \right)}$$$

Kalkulator akan menentukan turunan dari $$$\sin{\left(4 t \right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)$$$.

Solusi

Fungsi $$$\sin{\left(4 t \right)}$$$ merupakan komposisi $$$f{\left(g{\left(t \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ dan $$$g{\left(t \right)} = 4 t$$$.

Terapkan aturan rantai $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dt} \left(4 t\right)\right)}$$

Turunan fungsi sinus adalah $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dt} \left(4 t\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dt} \left(4 t\right)$$

Kembalikan ke variabel semula:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(4 t\right) = \cos{\left({\color{red}\left(4 t\right)} \right)} \frac{d}{dt} \left(4 t\right)$$

Terapkan aturan kelipatan konstanta $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ dengan $$$c = 4$$$ dan $$$f{\left(t \right)} = t$$$:

$$\cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(4 t\right)\right)} = \cos{\left(4 t \right)} {\color{red}\left(4 \frac{d}{dt} \left(t\right)\right)}$$

Terapkan aturan pangkat $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$4 \cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = 4 \cos{\left(4 t \right)} {\color{red}\left(1\right)}$$

Dengan demikian, $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$.

Jawaban

$$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$A


Please try a new game Rotatly