Turunan dari $$$\frac{\ln\left(x\right)}{\ln\left(2\right)}$$$

Kalkulator akan menentukan turunan dari $$$\frac{\ln\left(x\right)}{\ln\left(2\right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)$$$.

Solusi

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \frac{1}{\ln\left(2\right)}$$$ dan $$$f{\left(x \right)} = \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(2\right)}\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(2\right)} = \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(2\right)}$$

Dengan demikian, $$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$.

Jawaban

$$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$A


Please try a new game Rotatly