Turunan dari $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$

Kalkulator akan menentukan turunan dari $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right)$$$.

Solusi

Fungsi $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \ln\left(u\right)$$$ dan $$$g{\left(x \right)} = \sqrt{10} \sqrt{x}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)$$

Kembalikan ke variabel semula:

$$\frac{\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)}{{\color{red}\left(\sqrt{10} \sqrt{x}\right)}}$$

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \sqrt{10}$$$ dan $$$f{\left(x \right)} = \sqrt{x}$$$:

$$\frac{\sqrt{10} {\color{red}\left(\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)\right)}}{10 \sqrt{x}} = \frac{\sqrt{10} {\color{red}\left(\sqrt{10} \frac{d}{dx} \left(\sqrt{x}\right)\right)}}{10 \sqrt{x}}$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = \frac{1}{2}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)}}{\sqrt{x}} = \frac{{\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}}{\sqrt{x}}$$

Dengan demikian, $$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right) = \frac{1}{2 x}$$$.

Jawaban

$$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right) = \frac{1}{2 x}$$$A


Please try a new game Rotatly