Turunan dari $$$f x$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(f x\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c F{\left(x \right)}\right) = c \frac{d}{dx} \left(F{\left(x \right)}\right)$$$ dengan $$$c = f$$$ dan $$$F{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(f x\right)\right)} = {\color{red}\left(f \frac{d}{dx} \left(x\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$f {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = f {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(f x\right) = f$$$.
Jawaban
$$$\frac{d}{dx} \left(f x\right) = f$$$A
Please try a new game Rotatly