Turunan dari $$$e^{t} \cos{\left(t \right)}$$$

Kalkulator akan menentukan turunan dari $$$e^{t} \cos{\left(t \right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right)$$$.

Solusi

Terapkan aturan hasil kali $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ pada $$$f{\left(t \right)} = \cos{\left(t \right)}$$$ dan $$$g{\left(t \right)} = e^{t}$$$:

$${\color{red}\left(\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) e^{t} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right)\right)}$$

Turunan fungsi kosinus adalah $$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$:

$$e^{t} {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right) = e^{t} {\color{red}\left(- \sin{\left(t \right)}\right)} + \cos{\left(t \right)} \frac{d}{dt} \left(e^{t}\right)$$

Turunan dari fungsi eksponensial adalah $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$:

$$- e^{t} \sin{\left(t \right)} + \cos{\left(t \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - e^{t} \sin{\left(t \right)} + \cos{\left(t \right)} {\color{red}\left(e^{t}\right)}$$

Sederhanakan:

$$- e^{t} \sin{\left(t \right)} + e^{t} \cos{\left(t \right)} = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$

Dengan demikian, $$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right) = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$$.

Jawaban

$$$\frac{d}{dt} \left(e^{t} \cos{\left(t \right)}\right) = \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly