Turunan dari $$$\cot^{2}{\left(x \right)}$$$

Kalkulator akan menentukan turunan dari $$$\cot^{2}{\left(x \right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right)$$$.

Solusi

Fungsi $$$\cot^{2}{\left(x \right)}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = u^{2}$$$ dan $$$g{\left(x \right)} = \cot{\left(x \right)}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)}$$

Terapkan aturan pangkat $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ dengan $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right)$$

Kembalikan ke variabel semula:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right) = 2 {\color{red}\left(\cot{\left(x \right)}\right)} \frac{d}{dx} \left(\cot{\left(x \right)}\right)$$

Turunan dari kotangen adalah $$$\frac{d}{dx} \left(\cot{\left(x \right)}\right) = - \csc^{2}{\left(x \right)}$$$:

$$2 \cot{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cot{\left(x \right)}\right)\right)} = 2 \cot{\left(x \right)} {\color{red}\left(- \csc^{2}{\left(x \right)}\right)}$$

Dengan demikian, $$$\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$.

Jawaban

$$$\frac{d}{dx} \left(\cot^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$A


Please try a new game Rotatly