Turunan dari $$$\cos{\left(\ln\left(x\right) \right)}$$$

Kalkulator akan menentukan turunan dari $$$\cos{\left(\ln\left(x\right) \right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right)$$$.

Solusi

Fungsi $$$\cos{\left(\ln\left(x\right) \right)}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ dan $$$g{\left(x \right)} = \ln\left(x\right)$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Turunan fungsi kosinus adalah $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

Kembalikan ke variabel semula:

$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = - \sin{\left({\color{red}\left(\ln\left(x\right)\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

Turunan dari logaritma natural adalah $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$- \sin{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = - \sin{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{1}{x}\right)}$$

Dengan demikian, $$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right) = - \frac{\sin{\left(\ln\left(x\right) \right)}}{x}$$$.

Jawaban

$$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right) = - \frac{\sin{\left(\ln\left(x\right) \right)}}{x}$$$A


Please try a new game Rotatly