Turunan dari $$$\cos{\left(e^{t} \right)}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)$$$.
Solusi
Fungsi $$$\cos{\left(e^{t} \right)}$$$ merupakan komposisi $$$f{\left(g{\left(t \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ dan $$$g{\left(t \right)} = e^{t}$$$.
Terapkan aturan rantai $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(e^{t}\right)\right)}$$Turunan fungsi kosinus adalah $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(e^{t}\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(e^{t}\right)$$Kembalikan ke variabel semula:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(e^{t}\right) = - \sin{\left({\color{red}\left(e^{t}\right)} \right)} \frac{d}{dt} \left(e^{t}\right)$$Turunan dari fungsi eksponensial adalah $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$:
$$- \sin{\left(e^{t} \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - \sin{\left(e^{t} \right)} {\color{red}\left(e^{t}\right)}$$Dengan demikian, $$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$.
Jawaban
$$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$A