Turunan dari $$$b^{x}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(b^{x}\right)$$$.
Solusi
Terapkan aturan eksponen $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ dengan $$$n = b$$$:
$${\color{red}\left(\frac{d}{dx} \left(b^{x}\right)\right)} = {\color{red}\left(b^{x} \ln\left(b\right)\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(b^{x}\right) = b^{x} \ln\left(b\right)$$$.
Jawaban
$$$\frac{d}{dx} \left(b^{x}\right) = b^{x} \ln\left(b\right)$$$A
Please try a new game Rotatly