Turunan dari $$$5 x^{x}$$$

Kalkulator akan menentukan turunan dari $$$5 x^{x}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(5 x^{x}\right)$$$.

Solusi

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = 5$$$ dan $$$f{\left(x \right)} = x^{x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(5 x^{x}\right)\right)} = {\color{red}\left(5 \frac{d}{dx} \left(x^{x}\right)\right)}$$

Gunakan rumus $$$f^{g{\left(x \right)}}{\left(x \right)} = e^{g{\left(x \right)} \ln\left(f{\left(x \right)}\right)}$$$ dengan $$$f{\left(x \right)} = x$$$ dan $$$g{\left(x \right)} = x$$$ untuk menulis ulang ekspresi kompleks:

$$5 {\color{red}\left(\frac{d}{dx} \left(x^{x}\right)\right)} = 5 {\color{red}\left(\frac{d}{dx} \left(e^{x \ln\left(x\right)}\right)\right)}$$

Fungsi $$$e^{x \ln\left(x\right)}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = e^{u}$$$ dan $$$g{\left(x \right)} = x \ln\left(x\right)$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$5 {\color{red}\left(\frac{d}{dx} \left(e^{x \ln\left(x\right)}\right)\right)} = 5 {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$

Turunan dari fungsi eksponensial adalah $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$5 {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(x \ln\left(x\right)\right)$$

Kembalikan ke variabel semula:

$$5 e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 e^{{\color{red}\left(x \ln\left(x\right)\right)}} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 x^{x} \frac{d}{dx} \left(x \ln\left(x\right)\right)$$

Terapkan aturan hasil kali $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ pada $$$f{\left(x \right)} = x$$$ dan $$$g{\left(x \right)} = \ln\left(x\right)$$$:

$$5 x^{x} {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 5 x^{x} {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$5 x^{x} \left(x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)\right) = 5 x^{x} \left(x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)\right)$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$5 x^{x} \left(\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1\right) = 5 x^{x} \left(\ln\left(x\right) {\color{red}\left(1\right)} + 1\right)$$

Dengan demikian, $$$\frac{d}{dx} \left(5 x^{x}\right) = 5 x^{x} \left(\ln\left(x\right) + 1\right)$$$.

Jawaban

$$$\frac{d}{dx} \left(5 x^{x}\right) = 5 x^{x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly