Turunan dari $$$2 t$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dt} \left(2 t\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ dengan $$$c = 2$$$ dan $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(2 t\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(t\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = 2 {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{dt} \left(2 t\right) = 2$$$.
Jawaban
$$$\frac{d}{dt} \left(2 t\right) = 2$$$A
Please try a new game Rotatly