Turunan dari $$$2 n - 1$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dn} \left(2 n - 1\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{dn} \left(2 n - 1\right)\right)} = {\color{red}\left(\frac{d}{dn} \left(2 n\right) - \frac{d}{dn} \left(1\right)\right)}$$Turunan dari suatu konstanta adalah $$$0$$$:
$$- {\color{red}\left(\frac{d}{dn} \left(1\right)\right)} + \frac{d}{dn} \left(2 n\right) = - {\color{red}\left(0\right)} + \frac{d}{dn} \left(2 n\right)$$Terapkan aturan kelipatan konstanta $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ dengan $$$c = 2$$$ dan $$$f{\left(n \right)} = n$$$:
$${\color{red}\left(\frac{d}{dn} \left(2 n\right)\right)} = {\color{red}\left(2 \frac{d}{dn} \left(n\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dn} \left(n^{m}\right) = m n^{m - 1}$$$ dengan $$$m = 1$$$, dengan kata lain, $$$\frac{d}{dn} \left(n\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dn} \left(n\right)\right)} = 2 {\color{red}\left(1\right)}$$Dengan demikian, $$$\frac{d}{dn} \left(2 n - 1\right) = 2$$$.
Jawaban
$$$\frac{d}{dn} \left(2 n - 1\right) = 2$$$A