Turunan dari $$$1 - \cos{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right)$$$.
Solusi
Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$${\color{red}\left(\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$Turunan fungsi kosinus adalah $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(1\right) = - {\color{red}\left(- \sin{\left(x \right)}\right)} + \frac{d}{dx} \left(1\right)$$Turunan dari suatu konstanta adalah $$$0$$$:
$$\sin{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} = \sin{\left(x \right)} + {\color{red}\left(0\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Jawaban
$$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$A
Please try a new game Rotatly