Turunan dari $$$\frac{1}{x^{2} + 1}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(\frac{1}{x^{2} + 1}\right)$$$.
Solusi
Fungsi $$$\frac{1}{x^{2} + 1}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \frac{1}{u}$$$ dan $$$g{\left(x \right)} = x^{2} + 1$$$.
Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2} + 1}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(x^{2} + 1\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ dengan $$$n = -1$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(x^{2} + 1\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(x^{2} + 1\right)$$Kembalikan ke variabel semula:
$$- \frac{\frac{d}{dx} \left(x^{2} + 1\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(x^{2} + 1\right)}{{\color{red}\left(x^{2} + 1\right)}^{2}}$$Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)}}{\left(x^{2} + 1\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)}}{\left(x^{2} + 1\right)^{2}}$$Turunan dari suatu konstanta adalah $$$0$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{{\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)}{\left(x^{2} + 1\right)^{2}}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 2$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{\left(x^{2} + 1\right)^{2}} = - \frac{{\color{red}\left(2 x\right)}}{\left(x^{2} + 1\right)^{2}}$$Dengan demikian, $$$\frac{d}{dx} \left(\frac{1}{x^{2} + 1}\right) = - \frac{2 x}{\left(x^{2} + 1\right)^{2}}$$$.
Jawaban
$$$\frac{d}{dx} \left(\frac{1}{x^{2} + 1}\right) = - \frac{2 x}{\left(x^{2} + 1\right)^{2}}$$$A