Turunan dari $$$- \frac{x}{40}$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(- \frac{x}{40}\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = - \frac{1}{40}$$$ dan $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \frac{x}{40}\right)\right)} = {\color{red}\left(- \frac{\frac{d}{dx} \left(x\right)}{40}\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{40} = - \frac{{\color{red}\left(1\right)}}{40}$$Dengan demikian, $$$\frac{d}{dx} \left(- \frac{x}{40}\right) = - \frac{1}{40}$$$.
Jawaban
$$$\frac{d}{dx} \left(- \frac{x}{40}\right) = - \frac{1}{40}$$$A