Turunan dari $$$- \frac{2 x}{x^{2} + 1}$$$

Kalkulator akan menentukan turunan dari $$$- \frac{2 x}{x^{2} + 1}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)$$$.

Solusi

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = -2$$$ dan $$$f{\left(x \right)} = \frac{x}{x^{2} + 1}$$$:

$${\color{red}\left(\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)}$$

Terapkan aturan hasil bagi $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ pada $$$f{\left(x \right)} = x$$$ dan $$$g{\left(x \right)} = x^{2} + 1$$$:

$$- 2 {\color{red}\left(\frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)} = - 2 {\color{red}\left(\frac{\frac{d}{dx} \left(x\right) \left(x^{2} + 1\right) - x \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(1\right)}\right)}{\left(x^{2} + 1\right)^{2}}$$

Turunan dari jumlah/selisih adalah jumlah/selisih dari turunan:

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Turunan dari suatu konstanta adalah $$$0$$$:

$$- \frac{2 \left(x^{2} - x \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 2$$$:

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(2 x\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Sederhanakan:

$$- \frac{2 \left(1 - x^{2}\right)}{\left(x^{2} + 1\right)^{2}} = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Dengan demikian, $$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$.

Jawaban

$$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$A


Please try a new game Rotatly