Calculateur de décomposition de valeur singulière

La calculatrice trouvera la décomposition en valeur singulière (SVD) de la matrice donnée, avec les étapes indiquées.

$$$\times$$$

Si la calculatrice n'a pas calculé quelque chose ou si vous avez identifié une erreur, ou si vous avez une suggestion/un commentaire, veuillez l'écrire dans les commentaires ci-dessous.

Votre entrée

Trouvez le SVD de la $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]$$$.

Solution

Trouvez la transposition de la matrice : $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T} = \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]$$$ (pour les étapes, voir matrix transpose calculateur).

Multipliez la matrice avec sa transposition : $$$W = \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right] = \left[\begin{array}{ccc}2 & 2 & 2\\2 & 6 & 2\\2 & 2 & 2\end{array}\right]$$$ (pour les étapes, voir calculatrice de multiplication de matrice).

Maintenant, trouvez les valeurs propres et les vecteurs propres de $$$W$$$ (pour les étapes, voir calculateur de valeurs propres et vecteurs propres).

Valeur $$$8$$$, vecteur propre : $$$\left[\begin{array}{c}1\\2\\1\end{array}\right]$$$.

Valeur $$$2$$$, vecteur propre : $$$\left[\begin{array}{c}1\\-1\\1\end{array}\right]$$$.

Valeur $$$0$$$, vecteur propre : $$$\left[\begin{array}{c}-1\\0\\1\end{array}\right]$$$.

Trouver les racines carrées des valeurs propres non nulles ( $$$\sigma_{i}$$$ ):

$$$\sigma_{1} = 2 \sqrt{2}$$$

$$$\sigma_{2} = \sqrt{2}$$$

La $$$\Sigma$$$ est une matrice nulle avec $$$\sigma_{i}$$$ sur sa diagonale : $$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]$$$.

Les colonnes de la matrice $$$U$$$ sont les vecteurs (unités) normalisés: $$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]$$$ (pour les étapes de recherche d'un vecteur unité, voir unit vector calculateur).

Maintenant, l' $$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{i}$$$:

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{2 \sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{6}}{3}\\\frac{\sqrt{6}}{6}\end{array}\right] = \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{6}\end{array}\right]$$$ (pour les étapes, voir calculatrice de multiplication scalaire matricielle et calculatrice de multiplication matricielle).

$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right] = \left[\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{6}}{3}\end{array}\right]$$$ (pour les étapes, voir calculatrice de multiplication scalaire matricielle et calculatrice de multiplication matricielle).

Puisque nous n'avons plus de $$$\sigma_{i}$$$ non nul et que nous avons besoin d'un vecteur de plus, trouvez le vecteur orthogonal à tous les vecteurs trouvés en trouvant l'espace nul de la matrice dont les lignes sont les vecteurs trouvés: $$$\left[\begin{array}{c}\sqrt{2}\\-1\\1\end{array}\right]$$$ (pour les étapes, voir calculateur d'espace nul).

Normalize the vector: it becomes $$$\left[\begin{array}{c}\frac{\sqrt{2}}{2}\\- \frac{1}{2}\\\frac{1}{2}\end{array}\right]$$$, (for steps, see unit vector calculator).

Par conséquent, l' $$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right].$$$

Les matrices $$$U$$$, $$$\Sigma$$$ et $$$V$$$ sont telles que l' $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right] = U \Sigma V^T$$$ matrice initiale .

Réponse

$$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & 0.577350269189626 & -0.707106781186548\\0.816496580927726 & -0.577350269189626 & 0\\0.408248290463863 & 0.577350269189626 & 0.707106781186548\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]\approx \left[\begin{array}{ccc}2.82842712474619 & 0 & 0\\0 & 1.414213562373095 & 0\\0 & 0 & 0\end{array}\right]$$$A

$$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & -0.577350269189626 & 0.707106781186548\\0.866025403784439 & 0 & -0.5\\0.288675134594813 & 0.816496580927726 & 0.5\end{array}\right]$$$A