Vecteur tangent unitaire de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$
Calculatrices associées: Calculatrice de vecteur normal unitaire, Calculatrice du vecteur binormal unitaire
Votre saisie
Trouver le vecteur tangent unitaire à $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$.
Solution
Pour trouver le vecteur tangent unitaire, nous devons calculer la dérivée de $$$\mathbf{\vec{r}\left(t\right)}$$$ (le vecteur tangent), puis la normaliser (trouver le vecteur unitaire).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ (pour les étapes, voir calculatrice de dérivées).
Trouvez le vecteur unitaire : $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (pour les étapes, voir calculateur de vecteur unitaire).
Réponse
Le vecteur tangent unitaire est $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle.$$$A