Intégrale de $$$2 p - q$$$ par rapport à $$$p$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(2 p - q\right)\, dp$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(2 p - q\right)d p}}} = {\color{red}{\left(\int{2 p d p} - \int{q d p}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dp = c p$$$ avec $$$c=q$$$:
$$\int{2 p d p} - {\color{red}{\int{q d p}}} = \int{2 p d p} - {\color{red}{p q}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(p \right)}\, dp = c \int f{\left(p \right)}\, dp$$$ avec $$$c=2$$$ et $$$f{\left(p \right)} = p$$$ :
$$- p q + {\color{red}{\int{2 p d p}}} = - p q + {\color{red}{\left(2 \int{p d p}\right)}}$$
Appliquer la règle de puissance $$$\int p^{n}\, dp = \frac{p^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$- p q + 2 {\color{red}{\int{p d p}}}=- p q + 2 {\color{red}{\frac{p^{1 + 1}}{1 + 1}}}=- p q + 2 {\color{red}{\left(\frac{p^{2}}{2}\right)}}$$
Par conséquent,
$$\int{\left(2 p - q\right)d p} = p^{2} - p q$$
Simplifier:
$$\int{\left(2 p - q\right)d p} = p \left(p - q\right)$$
Ajouter la constante d'intégration :
$$\int{\left(2 p - q\right)d p} = p \left(p - q\right)+C$$
Réponse
$$$\int \left(2 p - q\right)\, dp = p \left(p - q\right) + C$$$A