Intégrale de $$$x^{7} \left(x^{8} - 3\right)^{33}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int x^{7} \left(x^{8} - 3\right)^{33}\, dx$$$.
Solution
Soit $$$u=x^{8} - 3$$$.
Alors $$$du=\left(x^{8} - 3\right)^{\prime }dx = 8 x^{7} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x^{7} dx = \frac{du}{8}$$$.
Donc,
$${\color{red}{\int{x^{7} \left(x^{8} - 3\right)^{33} d x}}} = {\color{red}{\int{\frac{u^{33}}{8} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(u \right)} = u^{33}$$$ :
$${\color{red}{\int{\frac{u^{33}}{8} d u}}} = {\color{red}{\left(\frac{\int{u^{33} d u}}{8}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=33$$$ :
$$\frac{{\color{red}{\int{u^{33} d u}}}}{8}=\frac{{\color{red}{\frac{u^{1 + 33}}{1 + 33}}}}{8}=\frac{{\color{red}{\left(\frac{u^{34}}{34}\right)}}}{8}$$
Rappelons que $$$u=x^{8} - 3$$$ :
$$\frac{{\color{red}{u}}^{34}}{272} = \frac{{\color{red}{\left(x^{8} - 3\right)}}^{34}}{272}$$
Par conséquent,
$$\int{x^{7} \left(x^{8} - 3\right)^{33} d x} = \frac{\left(x^{8} - 3\right)^{34}}{272}$$
Ajouter la constante d'intégration :
$$\int{x^{7} \left(x^{8} - 3\right)^{33} d x} = \frac{\left(x^{8} - 3\right)^{34}}{272}+C$$
Réponse
$$$\int x^{7} \left(x^{8} - 3\right)^{33}\, dx = \frac{\left(x^{8} - 3\right)^{34}}{272} + C$$$A