Intégrale de $$$x \sqrt{x^{2} - 1}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int x \sqrt{x^{2} - 1}\, dx$$$.
Solution
Soit $$$u=x^{2} - 1$$$.
Alors $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{x \sqrt{x^{2} - 1} d x}}} = {\color{red}{\int{\frac{\sqrt{u}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sqrt{u}$$$ :
$${\color{red}{\int{\frac{\sqrt{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sqrt{u} d u}}{2}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{2}$$$ :
$$\frac{{\color{red}{\int{\sqrt{u} d u}}}}{2}=\frac{{\color{red}{\int{u^{\frac{1}{2}} d u}}}}{2}=\frac{{\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{2}=\frac{{\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}}{2}$$
Rappelons que $$$u=x^{2} - 1$$$ :
$$\frac{{\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{{\color{red}{\left(x^{2} - 1\right)}}^{\frac{3}{2}}}{3}$$
Par conséquent,
$$\int{x \sqrt{x^{2} - 1} d x} = \frac{\left(x^{2} - 1\right)^{\frac{3}{2}}}{3}$$
Ajouter la constante d'intégration :
$$\int{x \sqrt{x^{2} - 1} d x} = \frac{\left(x^{2} - 1\right)^{\frac{3}{2}}}{3}+C$$
Réponse
$$$\int x \sqrt{x^{2} - 1}\, dx = \frac{\left(x^{2} - 1\right)^{\frac{3}{2}}}{3} + C$$$A