Intégrale de $$$\tan^{5}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \tan^{5}{\left(x \right)}\, dx$$$.
Solution
Soit $$$u=\tan{\left(x \right)}$$$.
Alors $$$x=\operatorname{atan}{\left(u \right)}$$$ et $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (les étapes peuvent être consultées »).
Par conséquent,
$${\color{red}{\int{\tan^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{5}}{u^{2} + 1} d u}}}$$
Puisque le degré du numérateur n’est pas inférieur à celui du dénominateur, effectuez la division euclidienne des polynômes (voir les étapes »):
$${\color{red}{\int{\frac{u^{5}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{3} - u + \frac{u}{u^{2} + 1}\right)d u}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(u^{3} - u + \frac{u}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{u d u} + \int{u^{3} d u} + \int{\frac{u}{u^{2} + 1} d u}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :
$$- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\int{u^{3} d u}}}=- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{4}}{4}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\int{u d u}}}=\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Soit $$$v=u^{2} + 1$$$.
Alors $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (les étapes peuvent être vues »), et nous obtenons $$$u du = \frac{dv}{2}$$$.
Donc,
$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{1}{2 v} d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \frac{1}{v}$$$ :
$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{1}{2 v} d v}}} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$
L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :
$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Rappelons que $$$v=u^{2} + 1$$$ :
$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$
Rappelons que $$$u=\tan{\left(x \right)}$$$ :
$$\frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} - \frac{{\color{red}{u}}^{2}}{2} + \frac{{\color{red}{u}}^{4}}{4} = \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} - \frac{{\color{red}{\tan{\left(x \right)}}}^{2}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}^{4}}{4}$$
Par conséquent,
$$\int{\tan^{5}{\left(x \right)} d x} = \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\tan^{5}{\left(x \right)} d x} = \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}+C$$
Réponse
$$$\int \tan^{5}{\left(x \right)}\, dx = \left(\frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}\right) + C$$$A